
Remarks on non-standard statistics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1985 J. Phys. A: Math. Gen. 18 3521

(http://iopscience.iop.org/0305-4470/18/18/015)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 11:48

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/18/18
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J.  Phys. A: Math. Gen. 18 (1985) 3521-3530. Printed in Great Britain 

Remarks on non-standard statistics 

J S Dowker 
Department of Theoretical Physics, The University of Manchester, Manchester M13 9PL, 
U K  

Received 30 April 1985 

Abstract. The theory of non-standard statistics is reviewed and placed in a (co)homological 
setting. Some general mathematical results are shown to be relevant. The specific heat of 
a two-panicle molecular gas is calculated as a function of temperature and the statistics 
determining parameter. It shows strong behaviour close to the fermion case. The second 
virial coefficient is calculated by a slightly improved method and its behaviour is compared 
with that of the vacuum energy of a quantum field interacting with a flux tube. 

1. Introduction 

The possibility of non-standard statistics in two dimensions arises, from a formal point 
of view, because the character group, 7 ~ 7 ,  of the fundamental group of the system 
configuration space, M ,  can differ from Z2(--&, the symmetric group of two elements). 

This was effectively pointed out by Laidlaw and  DeWitt in their path integral 
investigation [ 11 of quantum mechanics on topologically non-trivial spaces, and later 
by Leinaas and Myrheim [2] (see also Souriau [20]). 

In dimensions d greater than two T T  - Z2 leading uniquely to Bose or Fermi 
statistics [ 1-31, Whether one believes this to be the origin of the standard statistics or 
not, it is an  attractive result and lends credence to the analyses of the two-dimensional 
case that have recently appeared. In the present work we should like to make some 
comments on these developments. First some standard formalism is required. 

2. General formalism 

One approach, but by no means the only one, to obtain the quantum mechanics on a 
multiply connected space M is by projection from the theory on the simply connected 
universal covering space fi = M / T .  Roughly speaking A? consists of Irl copies of M 
related by the symmetry group r, which is isomorphic to the fundamental group of M. 

In  order that a wavefunction 6: fi + C on fi should project down consistently to 
a wavefunction on M it is necessary that 

&w = a ( Y ) m  V Y E l - ,  

where the a ( ? )  form a one-dimensional unitary representation of r. Taking one of 
the copies in fi actually to be M,  the wavefunctions on the other copies form the 
branches of a multivalued wavefunction on M ,  i.e. $ ( q )  = $( ~ - ' q )  where X :  G +  q is 
the covering projection. Moving G to < y  on A? corresponds, when projected down, 
to q going round a loop on M. This will be a non-trivial loop if y is not the identity. 
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All this is very basic. Some of the original references are given in [4] (see also [ 5 ] ) .  
Assume now that, for convenience, 6 obeys the free Schrodinger equation on 6. 

Then so will CC, on M through the (position independent) projection n-. However $( q )  
is multivalued. It is possible, quite generally, to remove this multivaluedness at  the 
expense of introducing an  interaction. The way this comes about is as follows [4]. 

The branches of the wavefunction are in one-to-one correspondence with the 
elements of n-,, i.e. with the homotopy classes of loops on M. However since we are 
dealing with scalar, U( 1)  quantum mechanics, or functional quantum field theory, the 
representation a( y )  is Abelian and  the homotopy classes of loops can be replaced by 
homology classes of cycles. The first homology group H , ( M ,  Z) is the Abelianised 7,. 

Those branches which correspond to different y's mapping to the same homology 
group element, h, will have the same phase factor, a ( h )  say. That is, 

& 4 Y )  = a ( m 4 )  (1) 

V y  such that y +  h under T ,  -+ H I .  
The a ( h )  form a unitary representation of H,. This has two advantages. Firstly, 

in any specific case, we can bypass the fundamental group and  move directly to H I  
which, as a rule, is easier to obtain. Secondly, in the general case, we can employ the 
structure theorem 

k 

i.e. a sum of b,Z's, the free part, and k ,  finite cyclic groups, the torsion part ( b ,  is the 
first Betti number and the t t  the first torsion numbers). 

Consider the case with no  torsion. The one-dimensional representations a ( h )  are 

a ( h )  = a ( n )  = e x p ( 2 n - i ( ~ -  n )  

where the b, dimensional vector n = { n m }  ( n m  E Z) labels the homology class and the 
real vector (Y = {a,,,}(a, E R) labels the representation. Since a ( h )  is a phase we aim 
to remove it by a gauge transformation. De  Rham's first theorem ensures the existence 
of a real, closed and regular 1-form w ( a )  on M (assumed orientable) with periods {a,,,} 

$e,,8 = a m  

over the fundamental cycles labelled by the unit vectors e ,  = (0, 0, . . . , 1 , .  . . , 0) with 
the 1 in the mth position. The general cycle is labelled by n = rime, so that 

Choose now some fiducial point qo and a reference path from qo to the current 
point q. Then we can label all paths from qo to q by the homology class of the cycle 
formed from a path together with the reference path from q to qo, and hence by the 
vector n. We choose the reference path to correspond to the homology class n = 0. 
With obvious notation the loop integral is split into a part over the reference path and 
a part over the remaining path, which is labelled now by n 
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Therefore, if we effect the phase transformation 

it is clear that as q goes round a loop (or  rather a cycle) the phase factor will cancel 
any multivaluedness making $ ' ( q )  single valued. Spelling things out, if G + G y  is the 
lift of the loop and if y maps to n under T ,  -+ H ,  then 0 in the phase factor in (4) is 
replaced by n and + ( q )  by a ( n ) $ ( q ) ,  according to (1). Equations (2) and (3) guarantee 
that the combination on the right-hand side of (4) is unchanged. 

The gauge transformation modifies the derivative with w acting as a vector potential 
form. If V = dq 'C ,  we have 

(0 + 2niw)$'  = exp -2xi ( lq:wl,,.+. 
In Lagrangian terms it corresponds to replacing L by L - Z x w ( a ) / d t .  Because w 

is closed, dw = 0, the classical equations of motion are unaffected. 
As a physical realisation one might imagine w ( a )  to be due to a series of b, magnetic 

fields, with fluxes proportional to the periods cy,, passing through the fundamental 
cycles e,,,, as in the Aharonov-Bohm effect [4,6-71. 

It is thus seen that the multivaluedness has been eliminated, at the cost of introducing 
an  interaction. Of course there is no need to transfer all the multivaluedness into an  
interaction (or  vice versa). A mixed situation is quite possible and, in the Aharonov- 
Bohm case, was discussed a long time ago by Kretzschmar [7]. 

The general idea is very old and  probably dates back to Weyl [8]. Dirac [9] gives 
the standard discussion of the electromagnetic case and Eddington makes statements 
of a similar nature in [lo]. Pandres [ l l ]  outlines a more general scheme. In the 
particular context of the Aharonov-Bohm effect, Kretzschmar [7] gives a very instruc- 
tive treatment and Byers and Yang [12] provide an  exemplary statement of the facts 
in connection with flux quantisation. The replacement of a topological restriction by 
an  interaction appears explicitly in the work of Edwards [13] on polymer statistical 
mechanics. 

3. Statistics 

So far this is a very general scheme. In order to apply it to statistics one has only to 
decide on the configuration space and then to investigate its homology. First some 
well known, scene-setting facts. 

For a system of N particles moving on a d-dimensional space, Md, the conventional 
configuration space is the N-fold product ( M d )  v. If the particles are identical, the 
statistics, Bose or Fermi, are normally imposed through the symmetry nature of the 
wavefunctions. 

The idea here is different. The configuration space itself is made to reflect the 
identity by taking the factor of ( M d ) "  by the permutation group on N symbols XN, 
i.e. by identifying points on ( M d ) N  that differ only by having two, or more, particle 
coordinates interchanged. If d > 2 then ( M d )  N / X N  is not a manifold and one has to 
remove the diagonals (the place, A, where two or  more coordinates are the same) to 
make it into one. The configuration space M is then C N ( M d )  = ( M T  - A ) / X N ,  a well 
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known mathematical construction. If d is greater than two, taking out the diagonals 
does no damage to the loop topology of M: so that M Y  - A is simply connected (if 
Md is). Hence r , ( M ) = X %  for d > 2 .  The Abelianised is Z2 with the even 
permutations mapping to the unit element of Z2  and the odd ones to its generator. 
The two representations of Z2  then yield Bose and Fermi statistics [ l ] .  

I f  d equals two there is less room for manoeuvre and  M p  - A  is not simply 
connected. For two particles in the plane M >  - R 4  and  A is a plane, R2. R4  - [plane} 
has the same loop structure as its successive deformation retracts, R3-{line}, R 2 -  
{point} and  S'. Therefore the fundamental group for two distinguishable particles in 
the plane is P. Dividing by X2,  to make the particles identical, does not change the 
fundamental group which is stiil 7 but, in this case, it is the group of all the integers 
(corresponding to a r rotation) while for distinguishable particles it is the group of 
even integers (corresponding to a 2n- rotation). Removal of the inessential centre-of- 
mass degree of freedom can be taken as the deformation retract leading to the space 
R'-  {point} which is topologically a cone. Dividing by C2 makes this a cone of opened 
angle r, [2]. 

In the general case, for N identical particles, the fundamental group is the braid 
group, [ 141. For distinguishable particles it is the coloured braid group. Until 5 5 we 
shall take Md to be the plane R2, which is the most often studied case. 

According to our general result of the previous section we d o  not need the 
fundamental group. The first homology group would do. On the plane this will be 
generated by circles, of which there are + N (  N - 1) since each particle can circle around 
every other. Therefore H , (  R2' - A ;  Z) - $N( N - l ) Z  and there is no torsion. If the 
particles are identical every Z becomes equivalent and  H,( C, ( R ' ) ;  Z )  - Z, a result 
that also easily follows by Abelianising the braid group. 

It is thus seen that the quantum mechanics of N distinguishable particles on the 
plane is labelled by iN(N-1)  real parameters a. Dividing by forces these 
parameters to be the same and  so, for identical particles, one needs just one parameter, 
exactly like the elementary theory of quantum mechanics on the circle [15] or the 
Aharonov-Bohm effect [6]. In these cases the form w is the angle form a dp/2n-  and  
i t  is clear that in the present case there will be a similar term in w for every pair of 
particles, the angle being the relative angle of rotation of the pair. 

The braid group appears in the theory of Riemann surfaces 1171 and i t  is convenient 
to use complex coordinates z ,  = x, + iy, ( i  = 1, . . . , N )  for the particle coordinates. Then 
one can write 

in the distinguishable case, and 

for identical particles, where z ,  - z, = rv exp(ip,,). 
Although this result is obvious it is possible to obtain it directly from known facts 

about the cohomology of configuration spaces, which is what is being used through 
De Rham's theorem. 

The cohomology in the distinguishable case has been fully worked out by Arnold 
[18] and Brieskorn E191 (see also [16]). The results are that ( i )  there is no torsion in 
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any cohomology dimension, (ii) the PoincarC polynomial is (1 + t ) (  1 + 2 t )  . . . (1 + 
( N -  l ) t ) ,  from which the Betti numbers can be read off, e.g. b,  = $ N ( N - l ) ,  b 2 =  
& N (  N - 1)( N - 2 ) ( 3 N  - 11, (iii) the cohomology vanishes in dimensions greater than 
the complex dimension of the space (= number of particles) and (iv) the cohomology 
ring is isomorphic to the algebra generated by the regular 1-forms 

These forms have the same function as the angle forms d$,,/2.ir and  so we regain 
the previous result in a mathematically rigorous fashion. In place of (5) one now 
has 

The cohomology in the identical case is harder to evaluate. However the free part 
of H* has been determined to be trivial in all but the first two dimensions, the first 
Betti number being unity, i.e. H'( C, ( R 2 ) ;  Z)  - E .  This of course agrees with the fact 
that H' is isomorphic to the free part of H , .  The form w ( a )  is obtained from (6) by 
setting all the cy,, equal, 

as before. 
This is all that is needed here but a few more general facts may be interesting. 
Because H ,  - E ,  H 2  is torsion free and  hence trivial. (This is not true in the coloured 

case.) Thus, according to the classification theorem of Cartan, Kostant, Souriau and 
Isham [20], there are no non-trivial U(1) bundles over the configuration space of 
identical particles in the plane. This means that the classification of the quantum 
mechanics by the vector a is complete. If the dimension of Md is greater than two 
and T,(  M d )  is trivial we have seen that H, - Z,. Further it can be shown that the free 
part of H2 is trivial; hence H 2  - Z2 and the two U( 1) bundles correspond to Bose and  
Fermi statistics [21]. Quite generally, since the torsion parts of HI and  H' are the 
same, the different U(1) bundles corresponding to Tor(H') are accounted for in the 
description of the possible multivalued wavefunctions according to the representations 
of HI given earlier. Any incompleteness in this latter will be due to the existence of 
a free part to H'. 

For large numbers of particles the cohomology of C , ( R ' )  stabilises and in 
dimensions above two appears to be all torsion (see, e.g., [19]). 

The use of (6) means that the phase transformation (4) to a single valued wavefunc- 
tion 9' reads, in complex notation, 

ccI'(z,, z ? )  = fl ( z ,  - z , )  ?"  cL(z,, 2 : )  
1 1  

in the distinguishable case, while for identical particles one gets 

The constant phase factor corresponding to the fiducial point qo has been dropped. 
These formulae appear in some recent papers [22] but we see them here as examples 

of a general formalism [4]. They can be given a more symmetrical form by writing 
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(we give only the identical case) 

w ( ( Y ) = ( Y  ( W , + W ? )  
i < j  

so that now 

The derivatives are modified according to 

(d/dz,  - aA,)(CI‘= A-e(d/dz,)+ 

( d / d z ~ + c y A : ) + ’ = A - o ( d / d z ~ ) +  
( 7 )  

where 

A, = ( 2 ,  - z k ) - l  
k f r  

Expressed in complex variables the construction of the configuration space is as 
follows. 

The action of the transpositions of the permutation group I;, on the coordinates 
z ,  is to reflect the point of C in one of the hyperplanes z, = 2,. The collection of these 
$ N (  N - 1) hyperplanes is characterised by the equation n,,, (z, - z,) = 0 and makes 
u p  the ( 2 N  - 2)-dimensional space h which forms the ‘branching space’ of the branched 
covering Cb + @”/Z,, ([17] I1 5 2). The excision of A from @ ”  yields the unbranched 
covering (C” - A ) + ( C N - A ) / Z N .  

I t  is interesting to note that the whole formalism can be generalised (e.g. [19]). 
For example, IN can be replaced by the Weyl group of a semisimple Lie group and  
the cohomology generating 1-forms are given in terms of the 1-forms describing the 
planes of reflection. It is not known whether these generalisations have any physical 
relevance. 

The extreme cases of cy = O  and cy =; correspond to Bose and  Fermi statistics. A 
physical realisation of the phase change can be given in which each particle possesses 
both charge and a magnetic flux [23]. These particles can reasonably be called dyons 
because a magnetic flux tube in three dimensions is the analogue of a magnetic 
monopole in two (cf [24] 5 2). 

4. Statistical mechanics 

Except in the cases cy = 0 and  cy = or N = 2 it is, apparently, difficult to implement 
the multivaluedness or, equivalently, to solve Schrodinger’s equation for a single valued 
wavefunction with the vector potential interaction ( 7 ) .  

The two-particle system can be analysed. One possibility is to determine the 
dependence on cy of the specific heat of a dilute gas of ‘diatomic’ molecules. An 
unspecified two-body binding force is assumed to fix the interparticle distance, and  
the mass of the particles is taken to be such that the internal partition function is 

3c 

Z =  1 e x p [ - ( m + a ) ’ / ~ ] = ( . n ~ ) ’ ’ ~ 8 ~ ( a , i ~ ~ ) ,  
m = --cc 

a theta function ([35], p 138). 
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The results for the specific heat C, are shown in figure 1. For large temperatures, 
T, C ,  approaches the classical value of i, from below if i< a <$ and from above if 
0 < cy < 4. The a = 0 and  CY = i curves are similar to those for ortho- and para-hydrogen, 
as might have been expected. However for a between a and 4 there is a maximum at 
smallish T. If we set 5 = 4 - a with G small then, for smallish T, C y  is well approximated 
by 

Cv - ( G /  T)’(cosh(G/ T))-’. 

No matter how close cy is to i, C ,  always has a maximum of -0.439 at T-0.913G. 
C, is periodic in a with period one and is symmetric about a =$. It is plotted in 
figure 2 for the value T = 0.05. As T decreases the peak becomes sharper. 

Another peculiar behaviour in interpolating statistics has been discussed by Arovas 
et al [ 2 5 ] .  They calculate the second virial coefficient for a dilute gas of particles 
obeying non-standard statistics. This is possible because the coefficient depends on 
only the two-particle partition function. Arovas et a1 calculate this latter quantity in 
two ways, the second of which they call a path integral method. Leaving this point 
aside and the fact that similar expressions are to be found in the work of Edwards 
[13] and Kretzschmar [7], we give here another, related treatment which has certain 
technical advantages. 

The standard formula for the second virial coefficient B (  T )  for two-dimensional 
problems is 

B ( T ) =  l im( iA-2h2Z(2) )  
A-= 

C“ 0 I I 

7 

Figure 1.  The specific heat C, as a function of temperature T for three values, 0, 0.4 and 
0.5 ,  of the statistics determining parameter CY. Units are h = c = k ,  = 1. 

Figure 2. The specific heat C, as a function of the statistics determining parameter CY for 
fixed T=O.OS. 
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where A is the surface area, Z (2 )  the relative motion partition function and  h 2  = 271/ mT 
The leading term in Z ( 2 )  is formally divergent and is expected to cancel the area term 
in (8). We want the finite remainder. 

To evaluate Z(2)  we use the expression, [26], forthe quantum mechanical propagator 
KaSp(r, r’, T )  on a cone of opened angle p and with phase factor exp(2n-ia). If p is 
set equal to n- then we obtain the interchange of two particles by going around the 
cone once. (This cone is the configuration space of two identical particles after the 
removal of the topologically, and dynamically, trivial centre-of-mass dimension [2].) 

In terms of this propagator the relative partition function is given by 

Z ( 2 )  = I KT,a(r, r, - i /mT) d r  (9) 

where the polar angle of r runs from 0 to T. 

expression given in [26] 
Rather than the Bessel function series for K p , o  it is better to use the contour integral 

where r = ( r ,  cp), r’ = ( r ’ ,  p’), p = ( r ,  5) and p’ = ( r ’ ,  0). The contour r is shown in [26]. 
The most convenient choice for our purposes is a closed contour around the pole at 
5 = ( c p  - c p ‘ )  together with the infinite, oppositely directed vertical lines 5 = 
cp - p‘* x / 2  + iy, -s < y < CO. The pole gives a contribution equal to the usual propa- 
gator on the plane 

1 i(r‘- r)’ 
- i- 4 T T  exp( 7) 9 

whatever the value of p. It is easily checked that, using (9), this cancels the area term 
in (8), as expected, exactly as in the field theory calculation of the one-loop effective 
Lagrangian. The contribution of the vertical lines is the sought-for finite correction. 
A very easy calculation gives the result 

B( T )  = -A2[2($- 

agreeing with Arovas et al. This formula has to be extended by periodicity to a > 1 
and  then shows cusps when cy is an integer. 

A similar behaviour is found in the vacuum energy (density) of a quantum field 
in the presence of a flux tube, [27]. On the spacetime T x S’ a complex field with 
circulating phase change e x p ( 2 ~ i a )  has a vacuum energy E = & - (f - a)’, if 0 5 cy G 1. 
This formula too must be extended by periodicity and  shows the same behaviour as 
B (  T ) .  Similar calculations can be performed in higher dimensional spatial geometries 
resulting in higher polynomials in (i- a ) .  Thus, in the spacetime T x (Rz-{point}), 
the one-loop effective Lagrangian density is & ( I  - G2)/48xr3 tan(n-G) while in T x 
( R ’  -{line>) it is a(  1 - cy’)(2- (r)/24n2r4 where r is the distance from the singularity. 

5. Further formalities 

It has been suggested that the quasiparticle excitations that occur in some explanations 
of the quantum Hall effect obey fractional statistics. In one discussion, [28], of this 
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effect the single-particle configuration space is taken to be the two-sphere, the necessary 
magnetic field being produced by a central monopole. It is therefore relevant to 
consider the configuration spaces [( S 2 ) N  - A]/XN. Fortunately the corresponding braid 
groups have been analysed [29]. Abelianisation, which amounts to assuming that 
everything commutes, easily shows that the first homology group has one generator, 
U, subject to the relation vZN-* = 1 ,  i.e. H ,  - z 2 N - 2 .  This means that the statistics can 
depend on the number of particles present. 6or two particles only bosons and fermions 
are possible. For any N the representations a ( y )  of Z 2 N - 2  are generated by the 
( 2 N  - 2)th roots of unity, 1 ,  w, w 2 ,  . . . , w . The boson representation is generated 
by 1 and the fermion one by w N - ' .  The homology classes are labelled by an integer 
n = 0 , 1 ,  . . . , (  2 N - 3 )  and the phase factors are a(n)=exp[2.rrirn/(2N-2)] in the 
representation generated by w '. We automatically obtain fractional statistics, but with 
even denominators. A similar conclusion is reached in [30]. 

As before, this conclusion can be reached without mentioning the braid group by 
looking directly at the cohomology of the configuration space. We do not go into 
details but refer to [31] and [32]. 

The only way to avoid number dependent statistics is to choose the boson or fermion 
case. 

2 N - 3  

6. Comments and conclusion 

The intention of the present work is, in part, to place the recent discussions of 
non-standard statistics in a more general setting and to draw attention to the relevance 
of homology theory. 

One outstanding problem is to obtain a quantum field theory incorporating non- 
standard statistics. Even for three particles there are difficulties not present for two, 
[22-231. 

Incidentally it is amusing to note that by deformation retractions the configuration 
space of three particles can be reduced to a homological dimension of two, namely to 
the space of isosceles triangles in the plane with a fixed scale and a fixed centroid (see 
the interesting paper of Bloore et a1 [33], and [31], for the corresponding three-space 
case). This space is not a manifold. In the distinguishable case it looks roughly like 
two tori with three circumferences in common (and further identifications). For N 
particles the corresponding series of retractions shows that the top, non-trivial 
(co)homology dimension is N - 1 and not N. 

Unfortunately we have nothing to say about the more than two-particle problem. 
The three-particle propagator can be reperiodised in the relative angles but the contour 
integral does not appear tractable. 

Concerning the vacuum energy of a quantum field in the presence of a flux tube, 
mentioned at the end of 0 4, Ford [34] has evaluated the energy density for twisted 
scalar fields in three-dimensional space. This corresponds to the cy = 4 case here. 
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